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Background
• Intra-tumor heterogeneity: variation among tumor cells

• Sources: genetic (mutations), nongenetic (epigenetic and transcriptomic changes), 
microenvironment

• Cancer stem cell (CSC) model: intra-tumor heterogeneity at the nongenetic level

• Certain cells are characteristic of regular stem cells: have the ability to self-renew OR 
differentiate into tumor cells

• Thought that CSCs originate from either: 

• Regular tissue cells that become mutated and turn into tumor cells

• Tumor cells that become dedifferentiated, leading to stem cell characteristics

• Stemness: thought to be a dynamic characteristic of tumor cells



Motivation
• Better understanding of CSC model: help create more effective and targeted 

cancer treatment strategies
• If CSCs can be identified by genetic and/or phenotypic characteristics, treatments can target 

these cells and prevent regrowth



Motivation
• Goals: to examine the phenotypes of cells and colonies during tumor growth

• To understand characteristics of stem cells VS regular tumor cells

• Identify features to classify cells into these two states

• Biological classification of tumor cells:

• Holoclones: more stem-like

• Divide at a faster rate (maintains more circular shape)

• More compact colonies

• Meroclones: more differentiated

• More irregularly shaped cells and colonies



Growth of tumor cells from T24 cell line was imaged at 2-hour intervals over several days



Principal Component Analysis (PCA)
• Images were then analyzed using CellProfiler: free open-source software used to 

quantitatively measure phenotypes from many images of cells

• Large number of variables (83) were generated by CellProfiler

• Many features redundant and/or highly correlated (area, perimeter, diameter, min/max 

radius)

• PCA: method for reducing dimensionality of large data sets

• Used to determine the most significant variables from the CellProfiler data (which features 
contributed most to the first/second principal components)

• Five images spaced over course of tumor growth were used for PCA (performed 
in R)



Perimeter MedianRadius 

-0.31281924 0.15771155

MajorAxisLength Solidity 

-0.30606363 0.28742077

MaxFeretDiameter Zernike_0_0 

-0.30123261 0.29023546

Compactness Extent 

-0.29473489 0.29390289

BoundingBoxArea FormFactor 

-0.28178664 0.30619106

Variables most positively and negatively correlated with 
first principal component (PC1):



UMAP analysis
• UMAP (Uniform Manifold Approximation and Projection): method for dimensional 

reduction, non-parametric clustering scheme

• Used to separate data into groups based on similarities in certain variables

• Analysis conducted including the variables found to be most important from PCA

• Excluded all granularity variables: associated strongly with image number (number of 
cells/objects in an image)

• UMAP first applied on the 5 sample images, then on each set (3) of image data 
corresponding to a quarter of a well in 24-well plate



UMAP results of 5 images over tumor growth
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Correlation of X2 and variables used in UMAP



Tumor Cell Classification
• Classifying cells into groups based on UMAP:

• FormFactor: 1 for a perfectly circular object (4*π*Area/Perimeter2)

• MedianRadius

• Solidity: proportion of pixels in the convex hull also in the object itself

• Zernike_0_0: measure of shape, correlated with other variables

• Extent: proportion of pixels in the bounding box located in the actual object, equals 1 for more 
circular objects

• Class 1: more meroclone-like

• Class 2: more holoclone-like, higher “stemness”

• Positively related to measures above (higher FormFactor, Extent, etc.)



UMAP VS Manual Analysis
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Cell State Transition Rate

Grids (#) _C1 _C2

2 C1_ 0.3469388 -1.693878

C2_ 0.5748299 2.683673

3 C1_ 0.2033898 0.1694915

C2_ 0.5462842 1.2372881

4 C1_ 1.0004606 0.7148779

C2_ -0.1303547 0.6895440

5 C1_ 0.5373449 0.343011

C2_ 0.2013580 0.921564

• Split images into different number 
of sections (grids), assign cells

• Exclude first and last 20 images from 
each set

• Exclude overcrowded or sparse grids

• Each cell at t=2 comes from either:

• Sustained (directly from t=1)

• Homologous growth (from same class)

• Heterologous growth (other cell type)

• Columns (C1_, C2_): source (t=1)

• Rows (_C1, _C2): destination (t=2) Cell state transition rates based on different grid sizes for image set C1



Cell State Transition Rate
• Class 1 cells (source) do not show a strong 

trend of transition rates

• Class 2 cells (source) generally much more 
likely to become (or maintain as) C2 cells 
than transition to C1 cells

• Seems to make biological sense since C2 cells 
(more holoclone or stemlike) can self-renew 
(maintain C2 state) or differentiate into C1 cells

• For a tumor to keep growing, however, holoclones 
should be more likely to self-renew, in order to 
create more CSCs and ensure tumor survival

Grids (#) _C1 _C2

2 C1_ 1.0 0.000000

C2_ -0.2 1.266667

3 C1_ 0.1524164 -0.2453532

C2_ 0.1449814 1.2788104

4 C1_ 0.23785595 0.6566164

C2_ 0.05695142 1.0586265

5 C1_ 0.56097561 0.4390244

C2_ -0.02926829 1.0292683

Cell state transition rates based on different grid sizes for 
image set C3



Summary
• Overall, PCA and UMAP analysis in R was used to classify tumor cells into two 

different classes based on phenotypic characteristics

• Most significant characteristics were related to cell shape and irregularity

• Thought to correspond with more holoclone (stemlike) and meroclone cells

• This classification can be used to analyze the colony makeup of other tumors

• Might help determine the likelihood that a tumor will regenerate after treatment, based on 
proportion/density of each cell type

• Could also guide possible treatments to target specifically holoclone type cells and prevent 
regrowth
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